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Finite Temperature BCS

0.1 Meanwhile, Back at the Hamiltonian
Last time, we found that with the substitution of the transformed operators,
the model Hamiltonian becomes,
HM −µNop =

∑
k (nice terms involving diagonal operators) + (undesired cross

terms)
(
2ξkukvk + ∆∗kv

2
k −∆ku

2
k

)
.

We can eliminate all of the ugly terms in the transformed Hamiltonian by mak-
ing a second constraint on the u’s and v’s, namely to make the bracket term in
the model Hamiltonian equal to zero. That leads to a quadratic equation for
the quantity ∆∗kvk/uk whose solution yields ∆∗kvk/uk = Ek − ξk, which is real.
Here again we have Ek =

√
∆2
k + ξ2. If we take the convention that uk is real

(as in the previous calculation), then it must be that vk and ∆ have the same
phase. This phase factor is the same for all k and endows the energy gap with
the macroscopic quantum phase factor in the superconducting state.
With the two constraints on the u’s and v’s, we can now solve for them in terms
of known quantities, and the result is

v2
k = 1

2

[
1− εk−µ√

∆2+(εk−µ)2

]
, and

u2
k = 1− v2

k = 1
2

[
1 + εk−µ√

∆2+(εk−µ)2

]
,

exactly as before in the variational calculation!

The resulting diagonalized Hamiltonian is,
HM − µNop =

∑
k (ξk − Ek + ∆kb

∗
k) +

∑
k Ek

(
γ+
k0γk0 + γ+

k1γk1

)
.

The first sum reproduces the ground state BCS energy. The second sum rep-
resents excitations out of the ground state. It counts excitations of energy Ek
through the γ+γ number operators.
These excitations are gapped by ∆, and as such are very rarely created at low
temperatures when kBT << ∆. Note that there is a gap in the energy spectrum
of these excitations, but no gap in the momentum. The excitations are called
Bogoliubons or quasi-particles.
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0.2 Finite-Temperature Self-Consistent Gap Equation
Now enforce the self-consistency condition on the bk operators through the en-
ergy gap, ∆k ≡ −

∑
l Vk,lbl with bk = 〈c−k,↓ck,↑〉. Expressing the c-operators in

terms of the γ operators eventually yields,
∆k = −

∑
l Vk,lu

∗
l vl
〈
1− γ+

l0γl0 − γ
+
l1γl1

〉
.

By inspection it seems clear that the γ+γ number operators now serve to de-
crease the right-hand side of the equation, resulting in a diminished energy gap
as more and more excitations are created out of the BCS ground state.

We can set up a finite-temperature version of the self-consistent gap equa-
tion as follows. First, propose that the excitations are created at finite tem-
perature by an amount dictated by Fermi-Dirac statistics since we know that
the γ operators are Fermionic in nature. Namely the number operator expec-
tation values are replace by the Fermi function for the quasiparticle excitation
at energy El: f(El) = 1

eβEl+1
with β = 1/kBT . This results in a factor of

1− 2f(El) = tanh(βEl/2).
The u∗l vl factor can be written as ∆l

2El
. The resulting finite-temperature self-

consistent gap equation is,
∆k = −

∑
l Vk,l

∆l

2El
tanh(βEl/2).

To proceed, once again put in the Cooper pairing potential as,

Vk,l =

{
−V |ξk| , |ξl| 6 ~ωc
0 |ξk| , |ξl| > ~ωc

with V a positive number. Again it leads to an isotropic gap, which can be
canceled in the numerator, yielding

1/V = + 1
2

∑Restricted
l

tanh(βEl/2)
El

Converting from a sum on l to an integral on energy brings in the density of
states D(E) and allows us to write:

1
D(EF )V =

´ ~ωc
0

tanh

[√
ξ2+∆(T )2

2kBT

]
√
ξ2+∆(T )2

dξ

At zero temperature the argument of the tanh is infinity, yielding 1 in the
numerator, and the zero-temperature gap result is recovered:
∆(T = 0) = ~ωc

sinh(1/D(EF )V ) .

Now examine the limit as T → Tc. We expect the gap to decrease con-
tinuously to zero, it’s value in the normal state. However, a large fraction of
the electrons in the metal will be quasi-particles, and their interactions are not
included in the Hamiltonian. Nevertheless we proceed. At Tc we expect,

1
D(EF )V =

´ ~ωc
0

tanh
[

ξ
2kBTc

]
ξ dξ This integral can be done with some effort and

yields an expression for Tc,
kBTc ≈ 1.13~ωce−1/D(EF )V , a result similar to that for the zero-temperature
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gap. In fact BCS predicts that in the weak coupling limit (D(EF )V << 1)
there is a universal result for the "reduced gap",
∆(0)/kBTc = 2/1.13 = 1.76. Data on elemental superconductors show values
in this ballpark, or higher.
By the way, the result that Tc ∼ ωc motivated the study of the "isotope effect"
on Tc discussed earlier in the course (i.e. TcMα = constant, with α = 0.5, where
M is the average ionic mass in the metal).

0.3 Temperature Dependent Gap
Numerical solution of the finite-temperature self-consistent gap equation for
∆(T ) is in very good agreement with data obtained by tunneling spectroscopy
on weak coupled elemental superconductors, as shown in the Supplementary
Material on the class web site.
The gap has two interesting asymptotic temperature dependences:

0.3.1 Low Temperatures

For T < Tc/3 one has ∆(T ) = ∆(0)
(
1− e−∆(0)/kBT

)
. In other words the gap

remains very close to it’s zero temperature value, dropping only slightly by an
activated amount.

0.3.2 Near Tc

For T → Tc one has ∆(T ) ≈ 1.74∆(0)
(

1− T
Tc

)1/2

. The superconducting gap
goes to zero continuously at Tc, characteristic of a second-order phase transi-
tion. This exponent of 1/2 is typical of ’mean field’ critical behavior for the
order parameter in 3D, and is the same as the mean-field treatment of the
ferromagnetic-paramagnetic phase transition. Note that the slope of ∆(T ) is
infinite at Tc.

0.4 Thermodynamic Quantities
This simple model Hamiltonian also allows study of the finite-temperature ther-
modynamic properties of an ideal BCS superconductor. One can calculate the
electronic entropy, heat capacity, and free energy vs. temperature. We ignore
the lattice contributions.

The BCS ground state is a ’superfluid’ in the sense that it cannot carry en-
tropy. The electronic entropy comes from the quasiparticles excited out of the
ground state. The electronic entropy for any Fermi gas is given by,
Se = −2kB

∑
k [(1− f(Ek)) ln(1− f(Ek)) + f(Ek) ln(f(Ek)].

For a normal metal this becomes,
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Sen = γT , where γ ≡ 2
3π

2D(EF )k2
B , and the entropy is just linear in temper-

ature. For a superconductor the situation changes because of the gap in the
excitation spectrum, leading to fewer quasiparticle excitations and lower en-
tropy than the normal state at all temperatures below Tc. In fact the electronic
entropy is exponentially small for T < Tc/3.

The electronic heat capacity is given by Ce = T dSe
dT . Once again this is a

linear function of temperature for a normal metal, Cen = γT . For a supercon-
ductor the electronic heat capacity is exponentially small at low temperatures
T < Tc/3, and enhanced above the normal state value just below Tc. The su-
perconducting electronic specific heat can be written as,
Ces = 2βkB

∑
k −

∂f(Ek)
∂Ek

[
E2
k + 1

2β
d∆2

dβ

]
.

The first term in square brackets is common to all Fermi gases. The second
term is unique to superconductors and arises from the re-arrangement of states
associated with the temperature-dependent gap. At Tc this term gives rise to
a discontinuous jump in electronic heat capacity because the singular slope of
∆(T ) there. BCS theory predicts a ’universal specific heat jump’ at Tc in the
weak-coupling approximation, given by,
∆C
Cen

= D(EF )
(
−d∆2

dT

)
/Cen

Using the weak-coupling expression for the gap near Tc, and the universal re-
duced gap value, one finds,
∆C
Cen

= 1.43.
This is found to be in very good agreement with measured results (see the Lec-
ture 1 viewgraphs) on weak-coupled elemental BCS superconductors.

Measurement of the universal specific heat jump is considered a hallmark of
"bulk" superconductivity. In higher-Tc superconductors it becomes a challenge
to measure ∆C/Cen because of very large lattice contributions (which must be
removed to compare to BCS predictions) and the difficulty in determining the
normal state electronic heat capacity (because the critical fields are often be-
yond our ability to generate).

The free energy of the superconductor is lower than that of the normal metal
state as shown on the class web site Supplemental Material. This difference in
free energy is known as the ’condensation energy.’
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